How-To Example: Dieselgate, incl. Data Preparation
With the VW Dieselgate event as the empirical setting, this page shows you how to fetch data in R, perform an event study using the EventStudy R-package, and do some basic plotting.
library(tidyquant)
library(dplyr)
library(readr)
Data Preparation
We use the package tidyquant to fetch the automotive stock data from Yahoo Finance. As we cannot get the full volume size from the required companies through Yahoo Finance API, we do not perform a volume event study in this vignette.
Let’s define the window from which we want to fetch the data of the German auto companies.
startDate <- "2014-05-01"
endDate <- "2015-12-31"
We focus us on the big five motor manufacturer in Germany, namely
- VW Group
- VW
- Audi
- Porsche
- Daimler
- BMW
# Firm Data
firmSymbols <- c("VOW.DE", "NSU.DE", "PAH3.DE", "BMW.DE", "DAI.DE")
firmNames <- c("VW preferred", "Audi", "Porsche Automobil Hld", "BMW", "Daimler")
firmSymbols %>%
tidyquant::tq_get(from = startDate, to = endDate) %>%
dplyr::mutate(date = format(date, "%d.%m.%Y")) -> firmData
knitr::kable(head(firmData), pad=0)
symbol | date | open | high | low | close | volume | adjusted |
---|---|---|---|---|---|---|---|
VOW.DE | 02.05.2014 | 194.05 | 194.05 | 188.00 | 188.55 | 67018 | 188.55 |
VOW.DE | 05.05.2014 | 188.20 | 189.20 | 185.45 | 188.60 | 69295 | 188.60 |
VOW.DE | 06.05.2014 | 189.05 | 189.90 | 184.80 | 186.00 | 49051 | 186.00 |
VOW.DE | 07.05.2014 | 185.65 | 187.00 | 184.60 | 184.70 | 52484 | 184.70 |
VOW.DE | 08.05.2014 | 185.05 | 189.00 | 185.05 | 188.95 | 51892 | 188.95 |
VOW.DE | 09.05.2014 | 188.60 | 189.50 | 187.95 | 188.45 | 40368 | 188.45 |
As the reference market, we choose the DAX.
# Index Data
indexSymbol <- c("^GDAXI")
indexName <- c("DAX")
indexSymbol %>%
tidyquant::tq_get(from = startDate, to = endDate) %>%
dplyr::mutate(date = format(date, "%d.%m.%Y")) -> indexData
indexData$symbol <- "DAX"
knitr::kable(head(indexData), pad=0)
date | open | high | low | close | volume | adjusted | symbol |
---|---|---|---|---|---|---|---|
02.05.2014 | 9611.79 | 9627.38 | 9533.30 | 9556.02 | 88062300 | 9556.02 | DAX |
05.05.2014 | 9536.38 | 9548.17 | 9407.09 | 9529.50 | 61911600 | 9529.50 | DAX |
06.05.2014 | 9570.25 | 9571.63 | 9440.47 | 9467.53 | 82062900 | 9467.53 | DAX |
07.05.2014 | 9418.50 | 9554.35 | 9410.08 | 9521.30 | 92732600 | 9521.30 | DAX |
08.05.2014 | 9547.27 | 9622.30 | 9487.57 | 9607.40 | 102022500 | 9607.40 | DAX |
09.05.2014 | 9591.32 | 9602.86 | 9558.11 | 9581.45 | 80084100 | 9581.45 | DAX |
Now, after we have fetched all the data, we prepare the data files for the API call, as described in the introductory vignette. We prepare in this step already the volume data for later purposes.
# Price files for firms and market
firmData %>%
dplyr::select(symbol, date, adjusted) %>%
readr::write_delim(path = "02_firmDataPrice.csv",
delim = ";",
col_names = F)
indexData %>%
dplyr::select(symbol, date, adjusted) %>%
readr::write_delim(path = "03_marketDataPrice.csv",
delim = ";",
col_names = F)
# Volume files for firms and market
firmData %>%
dplyr::select(symbol, date, volume) %>%
readr::write_delim(path = "02_firmDataVolume.csv",
delim = ";",
col_names = F)
indexData %>%
dplyr::select(symbol, date, volume) %>%
readr::write_delim(path = "03_marketDataVolume.csv",
delim = ";",
col_names = F)
Finally, we have to prepare the request file. The parameters for this Event Study are:
- Estimation window: 250
- Event window: -10 to 10
- Event date: 18.09.2015
Details of the format can be found in the introductory vignette.
group <- c(rep("VW Group", 3), rep("Other", 2))
request <- cbind(c(1:5), firmSymbols, rep(indexName, 5), rep("18.09.2015", 5), group, rep(-10, 5), rep(10, 5), rep(-11, 5), rep(250, 5))
request %>%
as.data.frame() %>%
readr::write_delim("01_requestFile.csv", delim = ";", col_names = F)
Performing the Event Studies: Calculating Abnormal Returns, Volumes, and Volatilities
After the preparation steps, we are now able to start the calculations. We use in all types of event studies the GARCH(1, 1) model. Please consider in your event studies that fitting this model is computationally expensive and no near-real-time response from the API can be expected.
Calculating abnormal returns
key <- "573e58c665fcc08cc6e5a660beaad0cb"
library(EventStudy)
est <- EventStudyAPI$new()
est$authentication(apiKey = key)
## [1] TRUE
# get & set parameters for abnormal return Event Study
# we use a garch model and csv as return
# Attention: fitting a GARCH(1, 1) model is compute intensive
esaParams <- EventStudy::ARCApplicationInput$new()
esaParams$setResultFileType("csv")
esaParams$setBenchmarkModel("garch")
dataFiles <- c("request_file" = "01_requestFile.csv",
"firm_data" = "02_firmDataPrice.csv",
"market_data" = "03_marketDataPrice.csv")
# check data files, you can do it also in our R6 class
EventStudy::checkFiles(dataFiles)
## Checking request_fileChecking firm_dataChecking market_data
# now let us perform the Event Study
arEventStudy <- est$performEventStudy(estParams = esaParams,
dataFiles = dataFiles,
downloadFiles = T)
## [1] "Check batch process: Step 0"
Now, you can use the downloaded csv (or your preferred data format) files in your analysis. During the creation of the arEventStudy
object we merge information from the request file, and the result files.
knitr::kable(head(arEventStudy$arResults))
Event ID | eventTime | ar | tValue | Firm | Reference Market | Estimation Window Length | Group |
---|---|---|---|---|---|---|---|
1 | -10 | 0.0032 | 0.3137 | VOW.DE | DAX | 250 | NA |
2 | -10 | 0.0253 | 1.8201 | NSU.DE | DAX | 250 | VW Group |
3 | -10 | 0.0052 | 0.5652 | PAH3.DE | DAX | 250 | VW Group |
4 | -10 | 0.0085 | 0.9551 | BMW.DE | DAX | 250 | Other |
5 | -10 | 0.0101 | 1.4429 | DAI.DE | DAX | 250 | Other |
1 | -9 | 0.0006 | 0.0588 | VOW.DE | DAX | 250 | NA |
The averaged abnormal return (aar) data.frame
has the following shape:
knitr::kable(head(arEventStudy$aarResults))
level | eventTime | aar | N | Pos | stat1 | stat2 | stat3 | stat4 | stat5 | stat6 | stat7 | stat8 | stat9 | stat10 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | VW Group | -10 | 0.0112 | 3 | 3 | 1.5247 | 1.6955 | 1.5871 | 1.9441 | 1.2859 | 1.4944 | 1.5225 | 1.9401 | 1.7928 | 2.7133 |
14 | Other | -10 | 0.0093 | 2 | 2 | 1.6669 | 1.3264 | 11.6250 | 4.9509 | 1.5658 | 2.0021 | 1.3952 | 3.1356 | 2.4105 | Inf |
27 | VW Group | -9 | -0.0015 | 3 | 1 | -0.2372 | -0.6144 | -1.4042 | -1.3290 | -0.5438 | -1.3223 | -0.2369 | -1.3262 | -1.5857 | -0.6998 |
40 | Other | -9 | 0.0024 | 2 | 2 | 0.4740 | 1.3264 | 1.2973 | 1.2505 | 0.5367 | 1.0826 | 0.3967 | 0.7920 | 1.3077 | NA |
53 | VW Group | -8 | 0.0035 | 3 | 2 | 0.6652 | 0.5405 | 0.9476 | 1.1537 | 0.5618 | 0.7711 | 0.6643 | 1.1513 | 0.9243 | 0.7847 |
66 | Other | -8 | 0.0135 | 2 | 2 | 2.2489 | 1.3264 | 1.9286 | 2.3441 | 1.6954 | 1.7402 | 1.8823 | 1.4846 | 2.0982 | Inf |
You can find the statistic naming in arEventStudy$aarStatistics
.
Calculating abnormal volatilities
est <- EventStudyAPI$new()
est$authentication(apiKey = key)
## [1] TRUE
# get & set parameters for abnormal return Event Study
esaParams <- EventStudy::AVyCApplicationInput$new()
esaParams$setResultFileType("csv")
avycEventStudy <- est$performEventStudy(estParams = esaParams,
dataFiles = dataFiles,
downloadFiles = T)
## [1] "Check batch process: Step 0"
The prepared data.frames
in avycEventStudy
have a similar shape as for the abnormal return Event Study.
Calculating abnormal volumes
This will be added in a later stage.
# est <- EventStudyAPI$new()
# est$authentication(apiKey = key)
#
# # get & set parameters for abnormal return Event Study
# esaParams <- EventStudy::AVCApplicationInput$new()
# esaParams$setResultFileType("csv")
#
# avEventStudy <- est$performEventStudy(estParams = esaParams,
# dataFiles = c("request_file" = "01_requestFile.csv",
# "firm_data" = "02_firmDataVolume.csv",
# "market_data" = "03_marketDataVolume.csv"))